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How cavity-enhanced spectroscopy can improve science returns and decrease 

cost for in-situ planetary measurements
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• What is Tunable Laser Spectroscopy?

• What can we measure with TLS?

• What goes into making a TLS for planetary missions?

• How can we improve, and what could we do then?

• What is cavity-enhanced spectroscopy?

• What are the design tradeoffs?

• What is unique about our design?

• How well does the spectrometer perform?

• What can we improve in the future?
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Tunable Laser Spectroscopy 

Overview
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What is TLS?

Tunable Laser Spectroscopy (TLS) uses the attenuation of 

narrow-band laser light to achieve sensitive, selective

detection of molecules over a wide range of pressures.
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What can we measure?

We can measure molecules that are:

• Between 2 and 12 atoms in size (more if rigid, like benzene)

• Present at parts-per-billion volume or greater (ppb wt for solids)

• In the gas phase, or can be vaporized

TLS can:

• Easily distinguish species of similar mass – e.g. C13O16O16

from C12O16O17 and C12H4 from O16

• Provide highly localized measurements
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What are the real-world applications?

Earth Science:

• Observe water transport through tropopause / stratosphere via 

isotopic measurements

• Measure methane / CO2 isotope fluxes to localize and quantify 

sources and sinks

• Monitor concentrations of reactive species (halogen compounds, 

NO, OH) and ozone

• Monitor emission of volcanic gases
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What are the real-world applications?

Planetary Science:

• Isotope ratio studies of various compounds – CO2, H2O, CH4, 

PH3, NH3, SO2 – as tracers of solar system formation, geological 

and atmospheric processes of each body

• Localized mixing ratios for atmospheric layers or near sites of 

geological or atmospheric activity

• Detection of trace quantities of biologically-relevant gases in 

atmosphere or processed samples
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What are the real-world applications?

Miscellaneous:

• Laboratory measurements in support of astronomy

• Observations of combustion chemistry / physics

• Breath analysis for medical diagnostics

• Safety monitoring for mining, drilling, and manufacturing 

industries
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What is TLS?
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What is TLS?
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𝐀 = 𝝈 𝝆 𝒍

Absorption cross-section (cm2)

Volume density (cm-3)

Path length (cm)

Noise-equivalent absorption (NEA):

Absorption signal equal to one standard deviation of the 

absorption measurement.

• Detector and shot noise

• Laser wavelength and intensity fluctuations

• Mechanical and thermal perturbations

• Etalons / fringing

𝛂 ≡ 𝝈 𝝆

Absorption 

coefficient (cm-1)
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What is TLS?

Figure adapted from J Hodgkinson and RP Tatam 2013 Meas. Sci. Technol. 24 012004 11
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What is TLS?

Data from HITRAN 12
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What is TLS?

Data from HITRAN 13
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What is TLS?

Data from HITRAN 14
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What is TLS?

Data from HITRAN 15
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What is TLS?

Data from HITRAN 16
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What does a TLS system look like?
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ExhaustSpectrometer

What does a TLS system look like?
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ExhaustGas Intake

What does a TLS system look like?

19

Spectrometer
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SpectrometerGas Intake

What does a TLS system look like?
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Example: SAM suite on Curiosity

From SAM website:  https://ssed.gsfc.nasa.gov/sam/samiam.html 21
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Example: SAM suite on Curiosity

From MSL website:  https://mars.jpl.nasa.gov/msl/multimedia/images/?imageid=4562 22
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Example: SAM suite on Curiosity

From JPL image gallery: https://www.jpl.nasa.gov/spaceimages/details.php?id=pia19086 23
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What can we improve?

We can increase path length.

We can decrease noise.

We can decrease size / weight of instrument.

We can decrease sample volume / gas handling requirements.
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What new science goals can we enable?

We can measure low-abundance targets without pre-

concentration, such as methane on Mars or clumped isotopes.

We can measure difficult-to-collect samples, such as water vapor 

from comets or plumes on Enceladus.

We can operate in atmospheres containing difficult-to-pump 

balance gases, such as helium on Saturn.
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Cavity Enhanced 

Spectroscopy
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What is cavity-enhanced spectroscopy?

Cavity-enhanced spectroscopy uses an optical resonator to let 

light traverse the same path thousands of times, dramatically 

increasing path length.
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What is cavity-enhanced spectroscopy?

Plot from Newport Corp.: https://www.newport.com/f/high-performance-supermirrors 28
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Cavity resonance conditions
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Laser Detector

λ ≡ Wavelength

L ≡ Cavity Length

Resonance condition: 𝐋 =
𝒏𝝀

𝟐
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Cavity resonance conditions

Plot from: Cavity Ring-Down Spectroscopy: Techniques and Applications, G Berden and R Engeln, 

2009
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What is cavity-enhanced spectroscopy?

Figure adapted from J Hodgkinson and RP Tatam 2013 Meas. Sci. Technol. 24 012004 31
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What is cavity-enhanced spectroscopy?
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Laser

Detector

Off-Axis Injection:

Injecting light at an offset from the center of the mirrors 

increases distance traveled before beam overlaps (reentrance).

• Decreases FSR, noise from inconsistent coupling

• Does NOT increase EPL – still limited by mirror R

• Requires larger mirrors than axial configurations
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What is cavity-enhanced spectroscopy?

Figure adapted from J Hodgkinson and RP Tatam 2013 Meas. Sci. Technol. 24 012004 33
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Alternate approach: Ringdown spectroscopy

Plot adapted from: Cavity Ring-Down Spectroscopy: Techniques and Applications, G Berden and R 

Engeln, 2009 34
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Alternate approach: Ringdown spectroscopy

Plot adapted from: Cavity Ring-Down Spectroscopy: Techniques and Applications, G Berden and R 

Engeln, 2009 35
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Comparison of CEAS techniques
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NICE-OHMS

• Best laboratory performance, not field-ready

OA-ICOS

• Good laboratory performance, best field performance

• Large mirrors → large sample volume

• Significant performance loss if cavity is shortened

CRDS

• Best laboratory performance, good field performance

• Small mirrors → small sample volume

• Can be short (10 cm), but needs piezo actuators to account for 

large FSR
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Design tradeoffs: Mirror reflectivity

• Higher reflectivity mirrors give longer effective path length, but 

make coupling more challenging

• Available reflectivity varies by wavelength – best at telecom 

bands (>99.999%), worst in UV / thermal IR (>99.97%)
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Design tradeoffs: Cavity length

• Challenging to measure τ < 1 μ𝑠; for 99.97% mirrors, minimum 

cavity length ≈ 10 cm

• Longer cavity more sensitive, but larger volume and may be 

difficult to fit in small spacecraft

• Longer cavity gives better FSR – could do without piezos in a 

large instrument, not practical for compact instruments
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Design tradeoffs: Triggering method

Acousto-optic modulator:

• Fast response, does not perturb laser

• High power, water cooled

Semiconductor optical amplifier:

• Fast response, does not perturb laser

• Limited wavelength availability

Laser current modulation:

• Slower response, laser requires re-stabilization period

• No extra equipment, available for all semiconductor lasers
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Prototype Water Analyzer Overview
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Cell design

41

• 12 cm mirror separation

• 630 m EPL

• Mirrors masked to 5mm ø

• 2.35 cc probed volume
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Cell design: Plano-concave cavity
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Cell design

43
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FPGA system
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FPGA

• Modulates laser

• Modulates piezo

• Interfaces with ADC

• Detects & triggers RDs

• Records RDs & 

metadata

• Passes data to CPU

CPU

• Sets laser scan 

parameters

• “Locks” piezo range

• Fits RDs to exponential 

function

• Controls fringe 

cancellation system

• Writes spectrum & 

metadata to file
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Fringe cancellation
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Fringe cancellation

Plot from: Cavity Ring-Down Spectroscopy: Techniques and Applications, G Berden and R Engeln, 

2009
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Fringe cancellation
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Spectrometer performance
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Spectrometer performance

Figure adapted from J Hodgkinson and RP Tatam 2013 Meas. Sci. Technol. 24 012004 49
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Spectrometer performance
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Spectrometer performance
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Spectrometer performance
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Isotope 

Ratio

Precision

(‰, 1σ)

δ18O ±0.024

δ17O ±0.11

Scan Parameter Value

Cell Pressure 1 mbar

H2O Partial Pressure 45 μbar

Temperature ~294 K

Scan Time 50 s

Laser Power 10 mW
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What can we improve in the future?

• Demonstrate performance at other wavelengths

• Currently working on methane measurements at 3.27μm

• Demonstrate reliability in field settings – UAV measurements

• Need to design and build second-generation cell, miniaturized 

electronics

• Find source for semiconductor optical amplifiers at non-

telecom wavelengths
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